Before composing anything, the html file needs to be initialize through init
function.
Function
init(filename, title, basetheme, charttheme, icon)
Parameter | Format | Description |
---|---|---|
filename | string | name of HMTL file which will be generated |
title | string | Title of HMTL page |
basetheme | string | name of theme (light, dark) - Default light |
charttheme | string | name of charts color theme (any name from themes) - Default sparrow_light |
icon | True/False | Turn on or off the pieSparrow banding on top right of page - Default True |
Example
import piesparrow as ps
ps.init(filename = 'helloWorld', title = 'My Hello World Page', basetheme = ps.light, charttheme =p s.sparrow_light, icon = True)
Color themes can be defined as piesparrow variable in the parameter ofinit(basetheme,charttheme)
function.
Function
init(filename, title, basetheme, charttheme, icon)
basetheme | charttheme |
---|---|
light |
rainbow_light |
light |
sparrow_light |
light |
virdis_light |
light |
cividis_light |
light |
gold_light |
light |
sunflower_light |
dark |
rainbow_dark |
dark |
sparrow_dark |
dark |
virdis_dark |
dark |
cividis_dark |
dark |
gold_dark |
dark |
sunflower_dark |
Grids are composed of rows and column, each row can contain a minimum of 1 and maximum of 5 columns. Unlimited number of rows can be added
Row is a basic building component, each visual element that needs to be presented on the page must be contained with in a row, a row can have one or multiple columns but it is not mandatory to have a column to display data.
Function
row(content)
Parameter | Format | Description |
---|---|---|
content | string/variable/function | Contents that needs to be displayed. |
Example
import piesparrow as ps
ps.row(ps.p('Hello World'))
5 different type of columns can be called, colxs, colsm, colmd, collg, colxl
colxs
occupies the width of 18%, colsm
occupies 36%, colmd
occupies 47%, collg
occupies 76% and colxl
occupies 98% width.
Function
colxs(content, align, type)
colsm(content, align, type)
colmd(content, align, type)
collg(content, align, type)
colxl(content, align, type)
Parameter | Format | Description |
---|---|---|
content | string/variable/function | Contents that needs to be displayed. |
align | string | Alignment of content inside column can be either 'left', 'right', 'center' . Default 'center' |
type | string | Turn the shadow property on or off, use 'box' for no shadow and 'card' for shadow. Default 'box' |
Example
import piesparrow as ps
ps.row(
ps.colsm(
type = 'card'
align = 'left'
content = ps.h1("Hello World !")
)
)
Beside writing text without any function will result in text being displayed, four different heading sizes starting from h1
(biggest) to h4
(smallest) can be called. p
can be called for paragraph texts and bold
can be called for strong text.
Function
h1(txt)
h2(txt)
h3(txt)
h4(txt)
p(txt)
bold(txt)
Parameter | Format | Description |
---|---|---|
txt | string/variabale/function | content |
Example
import piesparrow as ps
ps.row(
ps.h1('This is H1 Text')
+ ps.h2('This is H2 Text')
+ ps.h3('This is H3 Text')
+ ps.h4('This is H4 Text')
+ ps.p('This is paragraph Text')
+ ps.bold('This is bold text')
+ ps.p('This is '+ps.bold('inline bold')+'text')
)
Images can be displayed by calling img
.
Function
img(path, height, width)
Parameter | Format | Description |
---|---|---|
path | string | image path |
height | integer | height of image. Defaul 250 |
width | integer | width of image. Defaul 250 |
Example
import piesparrow as ps
ps.row(
ps.img(path='images/logo.png', height=100, width-100)
)
Links can be displayed by calling link
.
Function
link(target,label)
Parameter | Format | Description |
---|---|---|
target | string | link target |
label | string | label for link. |
width | integer | width of image. Defaul 250 |
Example
import piesparrow as ps
ps.row(
ps.link(target='https://piesparrow.com', label='home')
)
Pandas data frames can be beautifully displaye by callingtable
.
Function
table(df)
Parameter | Format | Description |
---|---|---|
df | dataframe | Pandas dataframe object |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.table(df='data')
)
Bar Charts can be created by calling chart
function and declaring type
parameter as 'bar'
Function
chart(title, df, columns, xcolumn, xaxistype, type, datalabels, zoom, legend, legendposition, grid, xlabel, ylabel, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
xcolumn | string | Name of column which needs to be placed at x axis. |
xaxistype | string | Type of x-axis, Default 'category' . for non categorical axis leave blank |
type | string | Type of chart, for bar chart use 'bar' . |
datalabels | string | Turn on data labels for charts 'true' for on or'false' for off, Default'true' . |
zoom | string | Turn on drag and zoom function for charts 'true' for on or'false' for off, Default'true' . |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
grid | string | Turn on grids display for charts 'true' for on or'false' for off, Default'true' . |
xlabel | string | Define label for x axis |
ylabel | string | Define label for y axis |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.chart(
title = 'barchart1',
df = data,
columns = ['Months','Data 1'],
xcolumn = 'Months',
type = 'bar',
)
)
Line Charts can be created by calling chart
function and declaring type
parameter as 'line'
Function
chart(title, df, columns, xcolumn, xaxistype, type, datalabels, zoom, legend, legendposition, grid, xlabel, ylabel, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
xcolumn | string | Name of column which needs to be placed at x axis. |
xaxistype | string | Type of x-axis, Default 'category' . for non categorical axis leave blank |
type | string | Type of chart, for line chart use 'line' . |
datalabels | string | Turn on data labels for charts 'true' for on or'false' for off, Default'true' . |
zoom | string | Turn on drag and zoom function for charts 'true' for on or'false' for off, Default'true' . |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
grid | string | Turn on grids display for charts 'true' for on or'false' for off, Default'true' . |
xlabel | string | Define label for x axis |
ylabel | string | Define label for y axis |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.chart(
title = 'linechart1',
df = data,
columns = ['Months','Data 1'],
xcolumn = 'Months',
type = 'line',
)
)
Spline Charts can be created by calling chart
function and declaring type
parameter as 'spline'
Function
chart(title, df, columns, xcolumn, xaxistype, type, datalabels, zoom, legend, legendposition, grid, xlabel, ylabel, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
xcolumn | string | Name of column which needs to be placed at x axis. |
xaxistype | string | Type of x-axis, Default 'category' . for non categorical axis leave blank |
type | string | Type of chart, for spline chart use 'spline' . |
datalabels | string | Turn on data labels for charts 'true' for on or'false' for off, Default'true' . |
zoom | string | Turn on drag and zoom function for charts 'true' for on or'false' for off, Default'true' . |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
grid | string | Turn on grids display for charts 'true' for on or'false' for off, Default'true' . |
xlabel | string | Define label for x axis |
ylabel | string | Define label for y axis |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.chart(
title = 'splinechart1',
df = data,
columns = ['Months','Data 1'],
xcolumn = 'Months',
type = 'spline',
)
)
Area Charts can be created by calling chart
function and declaring type
parameter as 'area'
Function
chart(title, df, columns, xcolumn, xaxistype, type, datalabels, zoom, legend, legendposition, grid, xlabel, ylabel, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
xcolumn | string | Name of column which needs to be placed at x axis. |
xaxistype | string | Type of x-axis, Default 'category' . for non categorical axis leave blank |
type | string | Type of chart, for area chart use 'area' . |
datalabels | string | Turn on data labels for charts 'true' for on or'false' for off, Default'true' . |
zoom | string | Turn on drag and zoom function for charts 'true' for on or'false' for off, Default'true' . |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
grid | string | Turn on grids display for charts 'true' for on or'false' for off, Default'true' . |
xlabel | string | Define label for x axis |
ylabel | string | Define label for y axis |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.chart(
title = 'areachart1',
df = data,
columns = ['Months','Data 1'],
xcolumn = 'Months',
type = 'area',
)
)
Area Spline Charts can be created by calling chart
function and declaring type
parameter as 'area-spline'
Function
chart(title, df, columns, xcolumn, xaxistype, type, datalabels, zoom, legend, legendposition, grid, xlabel, ylabel, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
xcolumn | string | Name of column which needs to be placed at x axis. |
xaxistype | string | Type of x-axis, Default 'category' . for non categorical axis leave blank |
type | string | Type of chart, for area spline chart use 'area-spline' . |
datalabels | string | Turn on data labels for charts 'true' for on or'false' for off, Default'true' . |
zoom | string | Turn on drag and zoom function for charts 'true' for on or'false' for off, Default'true' . |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
grid | string | Turn on grids display for charts 'true' for on or'false' for off, Default'true' . |
xlabel | string | Define label for x axis |
ylabel | string | Define label for y axis |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.chart(
title = 'areasplinechart1',
df = data,
columns = ['Months','Data 1'],
xcolumn = 'Months',
type = 'area-spline',
)
)
Pie Charts can be created by calling pie
function.
Function
pie(title, df, columns, legend, legendposition, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv')
ps.row(
ps.pie(
title = 'piechart1',
df = data,
columns = ['Data 1', 'Data 2', 'Data 3', 'Data 4'],
)
)
Donut Charts can be created by calling donut
function.
Function
donut(title, df, columns, legend, legendposition, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
df | dataframe | Pandas dataframe |
columns | list | List of all colums for which chart needs to be made |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.donut(
title = 'donutchart1',
df = data,
columns = ['Data 1', 'Data 2', 'Data 3', 'Data 4'],
)
)
Gauge can be created by calling gauge
function.
Function
gauge(title, label, value, legend, legendposition,color, height)
Parameter | Format | Description |
---|---|---|
title | string | unique name of chart |
label | string | Display label for gauge |
value | integer | value for gauge |
legend | string | Turn on legend for charts 'true' for on or'false' for off, Default'true' . |
legendposition | string | Define legend position in charts 'bottom' 'right' or'inset' , Default'bottom' . |
color | string | Hex value of color |
height | integer | Set height for chart. Default 500 |
Example
import piesparrow as ps
x = 60
ps.row(
ps.gauge(
title = 'gauge1',
label = 'progress',
value = x,
color = '#127881'
)
KPI card can be created by calling kpi
function. It workby dispalying last row value in dataframe and difference of last and second last value as delta in positive or negative.
Function
kpi(df, column)
Parameter | Format | Description |
---|---|---|
df | dataframe | Pandas dataframe |
column | string | Name of column |
Example
import piesparrow as ps
import pandas as pd
data = pd.read_csv('mock_data.csv)
ps.row(
ps.kpi(
df = data,
column = 'Data 1',
)
)